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Abstract

In this study, a comparison of the properties of homocysteine and homocystine adsorption at
mercury/chlorate(VIl) interface was done. The adsorption of homocysteine and homocystine is in
fact the adsorption of mercury(ll) cysteine thiolate and mercury(l) cysteine thiolate. The
differences in the capacity curves result probably from the formation of mercurous thiolate at
the mercury surface. It seems that the changes in E. and y. values accompanying the change in the
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amino acid protonation in the basic electrolyte solution, confirm the altered arrangement of the
cysteine mercury thiolates on the electrode surface.
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Introduction

Adsorption processes play an important role in the phenomena occurring at interfaces
including natural and technologically induced phase (Bandura et al., 2015; Chibowski
et al., 2010; Jesionowski, 2002; Wisniewska et al., 2014). Adsorption of sulphur-containing
molecules from solutions into metals to form close-packed and oriented monolayers provides
a convenient method to assign the desired chemical or physical properties of surfaces (Ikeda
etal., 1984; Nosal-Wiercinska and Dalmata, 2010; Sienko et al., 2006). It is important to know
the adsorption behaviour of an organic additive when studying its influence on the kinetics of
electrode processes or electrochemical corrosion.

This paper presents the results of measurements concerning the influence of homocysteine
and homocystine protonation on double-layer parameters at the electrode/chlorates(VII)
interface.

Homocysteine (HCE) and homocystine (HCY) play an important role in the maintenance
of homeostasis in living organisms. For example, an elevated level of homocysteine in blood
plasma (hyperhomocysteinemia) is considered a risk factor for cardiovascular and
neurodegenecrative diseases, some types of cancer, as well as miscarriage (Kraczkowska
et al., 2005). A high concentration of homocysteine in the human body leads to a
genetically determined multisystemic disorder known as homocystinuria.

Homocystine readily forms as a result of oxidation of homocysteine, and is a source of
sulfur in the human body. It is excreted in urine as a result of homocystinuria (Kraczkowska
et al., 2005).

As indicated in the literature (Heyrovsky and Vavricka, 1999; Heyrovsky et al., 1997,
Nosal-Wiercinska, 2012, 2013), the electrochemically reactive homocysteine and
homocystine undergo the same reactions on the mercury electrode as cysteine (RSH).
These reactions involve two steps of mercury electrooxidation: mercury(I) cysteine thiolate
Hg,(SR), and mercury(Il) cysteine thiolate Hg(SR),, which are strongly adsorbed on the
surface of the mercury electrode (Nosal-Wiercinska, 2013).

Experimental analysis

The experiments were carried out in thermostated cells at 298 K with pAutolab Fra 2/GPES
(Version 4.9) analyser (Eco Chemie, Utrecht, the Netherlands). The working electrode was a
dropping mercury electrode with a controlled increase rate and a constant drop surface
(0.014740 cm?) made by MTM, Poland. The reference was a silver chloride electrode and
the auxiliary electrode was platinum.

The solutions were deoxygenated with high-purity nitrogen prior to each experiment and
kept under nitrogen atmosphere during the measurements. Analytical grade chemicals from
Fluka were used.
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The 2, 4 and 6mol-dm™ chlorate(VII) solutions of HCIO4NaClO, with the
concentration ratios of (1:1) solution A, (1:4) solution B, (1:9) solution C, (4:1) solution
D, (9:1) solution E were examined. The enumerated solutions were designated according to
the scheme (Grochowski et al., 2016).

Amino acid solutions were prepared just before the measurements. The range of
concentrations studied of amino acids were 0.1-10 x 10> mol-dm .

The differential capacity of the double layer (C,) at the mercury/supporting electrolyte
interface was measured by the impedance method. For the whole polarisation range, the
capacity dispersion was tested at different frequencies between 200 and 1000 Hz. In order to
obtain the appropriate equilibrium values of differential capacity, a linear dependence of
capacity on the square element from frequency was extrapolated to zero frequency. This
procedure assumes that the impedance of the double layer is equivalent to a series of
capacity-resistance combinations and the rate of adsorption is diffusion controlled (Nosal-
Wiercinska and Dalmata, 2010).

The potential of zero charge (E.) was determined using a streaming electrode (Nosal-
Wiercinska and Dalmata, 2010), with the accuracy of £0.1 mV.

The surface tension at the potential of zero charge (y.) was measured using the method of
the highest pressure inside the mercury drop presented by Schiffrin (Nosal-Wiercinska and
Dalmata, 2010). The surface tension values were determined with an accuracy of
+0.2mNm ™.

Results and discussion

Differential capacity curves (Figure 1(a)) obtained in the studied systems for
different amino acids point to changes in capacity values, compared with the supporting
electrolyte.

In the region of “hump” potentials, appearing in 6mol-dm— chlorate(VII) at
HClO4:NaClO4 concentration ratios of 1:4 (B) solution without the amino acids
(~—600mV), after the introduction of homocysteine and homocystine to the solution, the
height of the hump decreases. The increase in homocysteine concentration causes a further
decrease in differential capacitance, whereas the increase in homocystine concentration
causes an increase of differential capacitance in the region of hump potentials.

Simultaneously, in the presence of HCY, the hump moves significantly towards the
negative potentials. The presence of HCE causes only a slight shift of the hump towards
the negative potentials.

In the region of higher potentials (~0mV), the peaks occur in the presence of HCE and
HCY owing to their above-mentioned electrochemical reactivity on mercury.

The replacement of mercury(I) cysteine thiolate Hg,(SR), and mercury(Il) cysteine
thiolate Hg(SR), at the electrode surface is accompanied by a significant change of the
electrode capacity (Heyrovsky et al., 1997; Nosal-Wiercinska, 2013). The pronounced
peaks (Ep=0mV), which increase with the increasing HCE and HCY concentrations in
all studied chlorate(VII) solutions, are associated with adsorption of Hg(SR),. The arca of
more negative potentials (from —400 to —1000 mV) reflects the adsorption of the oriented
surface layer of Hgy(SR), (Heyrovsky et al., 1997; Nosal-Wiercinska, 2013). The differences
in the capacity curves (for homocystine, we observe an increased differential capacity,
whereas for homocysteine a decreased differential capacity) result probably from the
formation of mercurous thiolate at the mercury surface.
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Figure |. Differential capacity — potential curves of double layer interface Hg/6 mol-dm™ chlorate(VIl)
with various concentrations of homocysteine (—) and homocystine (----) (in mol-dm—3): (e) 0, (O)
1-10~* (+)5-107% () I - 1073, where HCIO:NaClO, = 1:4 (B). (a) Inset shows data for homocysteine.

In the case of identical HCE concentrations (Figure 2), the hump at C; = f(E) curves
decreases and shifts towards the negative potentials, with the increase of chlorate(VII)
concentration, 2mol-dm >3- 4mol-dm™> — 6mol-dm™>, whereas for identical HCY
concentrations (Figure 2(a)), the hump at C; = f(E) curves increases and shifts towards
the negative potentials, with the increase of chlorate(VII) concentration, 2mol-dm >—
4mol-dm™ — 6mol-dm ™. The peaks on the capacitance curves increased with the
decrease in water activity (Figure 2(a)). Such changes indicate a considerable influence of
water on the surface properties of the interface.

Figures 1 and 2 of the capacity curves point to a complicated effect proceeding at the Hg/
chlorate(VII) solutions’ interface in the presence of both homocysteine and homocystine.
Changes in the NaClO4 and HCIO4 concentrations in the basic electrolyte solution probably
rearranged the layers of the adsorbed mercury thiolates. This may be due to the differences in
the side interactions between the adsorbed mercury thiolates and protonated —NH{ groups
and dissociated —COO™ groups of amino acids (Grochowski et al., 2016). It should be added

that the thiolates and the amino groups of homocysteine and homocystine are fully



Nosal-Wiercinska et al. 5

40 — a
35 —
(a\]
'E 30 —
o
40— 0 .
5
S 25 —
20 —
35 —
. 1 T T T T 1 T ]
400 0 -400 -800 -1200 -1600
N )
L 50 E/mV
o
L
=.
~ -
©
(@]
25 —
20 —
L L N N B Y L ) L) LB BN
600 400 200 0 -200 -400 -600 -800 -1000 -1200
E/mV

Figure 2. Differential capacity — potential curves of double layer interface Hg/2 mol-dm ™~ chlorate(VIl) (m),
4mol-dm~3 chlorate (VII) (E) and 6 mol-dm~ chlorate (VII) ([ ]) with 1-10~3mol-dm~3 homocysteine,
where HCIO4:NaClO4 = 1:4 (a) Inset shows details for homocystine.

protonated and the carboxylic groups are totally dissociated in solutions with the prevailing
amount of chloric acid(VII), whereas the thiolates and the amino groups are only partly
protonated in solutions with the prevailing amount of sodium salt of the chloric acid(VII)
(Grochowski et al., 2016).

Table 1 contains the values of potentials of zero charge E. and the values of surface
tension y. at zero charge for the studied amino acids as a function of the supporting
electrolyte concentration.

The increase in sodium salt concentration in the basic electrolyte solution results in the
shift of the E. towards more positive potentials, whereas the increase in chloric(VII) acid
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Table |. Potential of zero — charge E, vs. Ag/AgCl electrode and surface tension y, for E, of chlorates(VII)
solutions of concentration ratio HCIO4: NaClOy (1:1) solution A, (1:4) solution B, (1:9) solution C, (4:1)
solution D, (9:1) solution E 4+ 1-107> mol-dm™ homocysteine (Grochowski et al. 2016) and 1-10~>mol-dm™3
homocystine systems.

0 I x 103 cHCE/moI-dmf"' I x 103 cHCY/moI-dmf"'
—E,/IV Y/m Nm~' —E/IV v /m Nm~' —E/V v /m Nm™'

2 mol-dm ™2 chlorate(VIl)

A 0.483 469.5 0.487 466.3 0.489 467.4

B 0.481 470.3 0.487 458.9 0.485 461.4

C 0.480 4744 0.483 467.9 0.484 466.2

D 0.494 467.1 0.497 465.4 0.504 451.6

E 0.496 466.3 0.499 462.9 0.509 461.3
4mol-dm™3 chlorate(VIl)

A 0.497 0.483 0.518 466.3 0.520 463.6

B 0.496 0.481 0.503 464.6 0.500 461.3

C 0.487 0.480 0.499 463.8 0.500 462.7

D 0.536 0.494 0.540 464.6 0.545 458.1

E 0.547 0.496 0.553 455.6 0.550 458.9
6 mol-dm™> chlorate(VIl)

A 0.528 471.2 0.535 466.3 0.554 463.3

B 0.522 468.7 0.528 460.5 0.533 457.2

C 0.519 464.6 0.526 458.1 0.535 3584

D 0.581 466.3 0.588 462.9 0.605 454.8

E 0.607 465.4 0.619 460.5 0.621 458.7

concentration results in the shift of the FE. in the opposite direction. Such changes
accompanying the change in the amino acids protonation in the basic electrolyte solution
confirm the altered arrangement of the cysteine mercury thiolates on the electrode surface
(Grochowski et al., 2016).

The surface tension values (Table 1) at the potential of zero charge y. decrease, which
confirms the occurrence of the adsorption process (Dalmata and Nosal-Wiercinska, 2008;
Nosal-Wiercinska et al., 2015).

Conclusion

The changes in the double-layer parameters at the mercury/chlorates(VII) interface, in the
presence of amino acids under conditions of varying protonation of the homocysteine and
homocystine were observed. The adsorption of homocysteine and homocystine is in fact the
adsorption of mercury(Il) cysteine thiolate and mercury(l) cysteine thiolate. The changes in
y. point to the increase of adsorption of amino acids in an HCY > HCE series.
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