$\mathrm{E}:=210 \cdot 10^{3} \cdot \mathrm{MPa} \quad \nu:=0.3$
$\mathrm{G}:=\frac{\mathrm{E}}{2(1+\nu)}=8.077 \times 10^{4} \cdot \mathrm{MPa}$
$\mathrm{Jz}:=11280 \cdot \mathrm{~cm}^{4} \quad \mathrm{Jy}:=3920 \cdot \mathrm{~cm}^{4} \quad \mathrm{JX}:=103 \cdot \mathrm{~cm}^{4}$
1240
$\mathrm{E}=210 \mathrm{GPa}$ $\mathrm{Jz}=11260 \mathrm{~cm} 4$ $\mathrm{Jy}=3920 \mathrm{~cm} 4$ $J x=103 \mathrm{~cm} 4$

UPMS

$$
\begin{aligned}
& \delta_{11}:=\left(\frac{1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 4+\frac{1}{2} \cdot 3 \cdot 3 \cdot \frac{2}{3} \cdot 3+3 \cdot 5 \cdot 3\right) \cdot \frac{\mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jz}}+(4 \cdot 5 \cdot 4) \cdot \frac{\mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+(4 \cdot 3 \cdot 4) \cdot \frac{\mathrm{m}^{3}}{\mathrm{G} \cdot \mathrm{JX}}=0.59 \mathrm{~m} \cdot \frac{1}{\mathrm{kN}} \\
& \delta_{12}:=(0) \cdot \frac{\mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jz}}+\left(\frac{1}{2} \cdot 5 \cdot 5 \cdot 4\right) \cdot \frac{\mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+0 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{G} \cdot \mathrm{JX}}=6.074 \times 10^{-3} \mathrm{~m} \cdot \frac{1}{\mathrm{kN}} \\
& \delta_{22}:=(0) \cdot \frac{\mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{JZ}}+\left(\frac{1}{2} \cdot 3 \cdot 3 \cdot \frac{2}{3} 3+\frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{2}{3} 5\right) \cdot \frac{\mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+(3 \cdot 5 \cdot 3) \cdot \frac{\mathrm{m}^{3}}{\mathrm{G} \cdot \mathrm{Jx}}=0.547 \mathrm{~m} \cdot \frac{1}{\mathrm{kN}}
\end{aligned}
$$

$$
\Delta_{\mathrm{lp}}:=\left[\frac{-1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 80+\frac{2}{3} \cdot 4 \cdot \frac{10 \cdot 4^{2}}{8} \frac{1}{2} 4+\frac{1}{2} 3 \cdot 3 \cdot\left(\frac{1}{3} 20-\frac{2}{3} 100\right)-3 \cdot 5 \cdot 75\right] \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}^{3}}{\mathrm{E} \cdot \mathrm{Jz}} \ldots
$$

$$
+\left[(-4 \cdot 5 \cdot 80) \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+(-4 \cdot 3 \cdot 80) \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}^{3}}{\mathrm{G} \cdot \mathrm{JX}}\right]
$$

$\Delta_{1 p}=-11.806 \mathrm{~m}$
$\Delta_{2 \mathrm{p}}:=(0) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jz}}+\left(\frac{-1}{2} \cdot 3 \cdot 3 \cdot 40-\frac{1}{2} \cdot 5 \cdot 5 \cdot 80\right) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+(-3 \cdot 5 \cdot 40) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^{3}}{\mathrm{G} \cdot \mathrm{JX}}$
$\Delta_{2 p}=-7.356 \mathrm{~m}$
Rozewiązanie układu równań

$$
\begin{array}{ll}
\mathrm{D}:=\left(\begin{array}{cc}
\delta_{11} & \delta_{12} \\
\delta_{12} & \delta_{22}
\end{array}\right) & \mathrm{P}:=\binom{-\Delta_{1 \mathrm{p}}}{-\Delta_{2 \mathrm{p}}} \\
\mathrm{X}:=\mathrm{D}^{-1} \cdot \mathrm{P} & \mathrm{X}=\binom{19.87874}{13.22464} \cdot \mathrm{kN}
\end{array}
$$

Momenty				\square							Most	
	Stan X1=1			Stan X2=1				Stan P				
	M x	My	Mz	Mx	My	Mz	Mx	My	Mz	Mx	My	Mz
A-B	0	0	0	0	0	0	0	0	0	0	0	0
B-A	0	0	4	0	0	0	0	-40	-80	0	-40	-0.484
B-C	4	0	0	0	0	0	-80	-40	20	-0.484	-40	20
C-B	4	0	3	0	-3	0	-80	40	-100	-0.484	0.325	-40.363
C-D	0	-4	-3	-3	0	0	40	80	100	0.325	0.484	40.363
D-C	0	-4	-3	-3	-5	0	40	80	50	0.325	-65.641	-9.637
TNACE												
	Stan X1=1			$S \tan \mathrm{X}=1$				Stan P			Sily ost	
	Nx	Ty	Tz									
A-B	0	1	0	0	0	0	0	0	10	0	19.879	10
B-A	0	-1	0	0	0	0	0	40	-10	0	20.121	-10
B-C	0	1	0	0	0	-1	-10	-40	0	-10	-20.121	-13.225
C-B	0	-1	0	0	0	1	-10	40	0	-10	20.121	13.225
C-D	1	0	0	0	0	-1	-40	-10	0	-20.121	-10	-13.225
D-C	1	0	0	0	0	1	-40	10	0	-20.121	10	13.225
REAKCJE												
	Stan X1=1	Stan X2=1	Stan P	Rost								
RDX	0	1	0	13.225								
RDY	0	0	-10	-10								
RDZ	-1	0	40	20.121								
MDX	3	0	-50	9.637								
MDY	4	5	-80	65.641								
MDZ	0	3	-40	-0.325								

Sprawdzenie kinematyczne

$$
\begin{aligned}
\mathrm{u}_{\mathrm{Az}}= & \int \frac{\text { M1y } \cdot \text { Mosty }}{\mathrm{E} \cdot \mathrm{Jy}} \mathrm{ds}+\int \frac{\mathrm{M} 1 \mathrm{z} \cdot \mathrm{Mostz}}{\mathrm{E} \cdot \mathrm{Jz}} \mathrm{ds}+\int \frac{\mathrm{M} 1 \mathrm{x} \cdot \mathrm{Mostx}}{\mathrm{G} \cdot \mathrm{Jx}} \mathrm{ds} \\
\mathrm{u}_{\mathrm{Az}}:= & {\left[\frac{-1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 0.484+\frac{2}{3} \cdot 4 \cdot \frac{10 \cdot 4^{2}}{8} \frac{1}{2} 4+\frac{1}{2} 3 \cdot 3 \cdot\left(\frac{1}{3} 20-\frac{2}{3} 40.363\right)+3 \cdot 5 \cdot \frac{1}{2}(9.627-40.363)\right] \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}^{3}}{\mathrm{E} \cdot \mathrm{Jz}} \ldots } \\
& +\left[\left[4 \cdot 5 \cdot \frac{1}{2}(65.641-0.484)\right] \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+(-4 \cdot 3 \cdot 0.484) \cdot \frac{\mathrm{kN} \cdot \mathrm{~m}^{3}}{\mathrm{G} \cdot \mathrm{Jx}}\right] \\
\mathrm{u}_{\mathrm{Az}}= & 1.539 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

błąd względny
blad1 $:=\frac{\left|\mathrm{u}_{\mathrm{Az}}\right|}{\left|\Delta_{\mathrm{lp}}\right|}=1.303 \times 10^{-3} . \%$
$u_{B x}=\int \frac{M 2 y \cdot \text { Mosty }}{E \cdot J y} d s+\int \frac{\text { M2z•Mostz }}{E \cdot J z} d s+\int \frac{\text { M2x•Mostx }}{G \cdot J x} d s$
$u_{B x}:=(0) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jz}}+\left[\frac{-1}{2} \cdot 3 \cdot 3 \cdot \frac{1}{2}(40+0.325)+\frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{1}{2}(65.641-0.484)\right] \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^{3}}{\mathrm{E} \cdot \mathrm{Jy}}+(-3 \cdot 5 \cdot 0.325) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^{3}}{\mathrm{G} \cdot \mathrm{Jx}}$

$$
\begin{aligned}
& \mathrm{u}_{\mathrm{Bx}}=-0.02 \mathrm{~m} \\
& \text { blad2 }:=\frac{\left|\mathrm{u}_{\mathrm{Bx}}\right|}{\left|\Delta_{2 \mathrm{p}}\right|}=0.274 . \%
\end{aligned}
$$

Sprawdzenie statyczne

$$
\begin{aligned}
& \mathrm{RDx}:=-13.225+13.225=0 \\
& \mathrm{RDy}:=10-10=0 \\
& \mathrm{RDz}:=-40+19.879+20.121=0
\end{aligned}
$$

$$
\text { MDx }:=-10 \cdot 5-20+40 \cdot 3+9.637-19.879 \cdot 3=0
$$

$$
\text { MDy }:=-19.879 \cdot 4+10 \cdot 4 \cdot 2-13.225 \cdot 5+65.641=0
$$

$$
\mathrm{MDz}:=-0.325+10 \cdot 4-13.225 \cdot 3=0
$$

JEŻELI UKŁAD LOKALNY PRĘTA C-D WYGLĄDA TAK, TOZ ZNAKI WYKRESÓW MAJĄ POSTAĆ

