$$E := 210 \cdot 10^{3} \cdot MPa \qquad \nu := 0.3$$

$$G := \frac{E}{2(1 + \nu)} = 8.077 \times 10^{4} \cdot MPa$$

$$Jz := 11280 \cdot cm^{4} \qquad Jy := 3920 \cdot cm^{4} \qquad Jx := 103 \cdot cm^{4}$$



$$\begin{split} \delta_{11} &\coloneqq \left(\frac{1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 4 + \frac{1}{2} \cdot 3 \cdot 3 \cdot \frac{2}{3} \cdot 3 + 3 \cdot 5 \cdot 3\right) \cdot \frac{m^3}{E \cdot J_Z} + (4 \cdot 5 \cdot 4) \cdot \frac{m^3}{E \cdot J_Y} + (4 \cdot 3 \cdot 4) \cdot \frac{m^3}{G \cdot J_X} = 0.59 \text{ m} \cdot \frac{1}{kN} \\ \delta_{12} &\coloneqq (0) \cdot \frac{m^3}{E \cdot J_Z} + \left(\frac{1}{2} \cdot 5 \cdot 5 \cdot 4\right) \cdot \frac{m^3}{E \cdot J_Y} + 0 \cdot \frac{m^3}{G \cdot J_X} = 6.074 \times 10^{-3} \text{ m} \cdot \frac{1}{kN} \\ \delta_{22} &\coloneqq (0) \cdot \frac{m^3}{E \cdot J_Z} + \left(\frac{1}{2} \cdot 3 \cdot 3 \cdot \frac{2}{3} \cdot 3 + \frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{2}{3} 5\right) \cdot \frac{m^3}{E \cdot J_Y} + (3 \cdot 5 \cdot 3) \cdot \frac{m^3}{G \cdot J_X} = 0.547 \text{ m} \cdot \frac{1}{kN} \\ \Delta_{1p} &\coloneqq \left[\frac{-1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 80 + \frac{2}{3} \cdot 4 \cdot \frac{10 \cdot 4^2}{8} \cdot \frac{1}{2} \cdot 4 + \frac{1}{2} \cdot 3 \cdot 3 \cdot \left(\frac{1}{3} \cdot 20 - \frac{2}{3} \cdot 100\right) - 3 \cdot 5 \cdot 75\right] \cdot \frac{kN \cdot m^3}{E \cdot J_Z} \dots \\ &+ \left[(-4 \cdot 5 \cdot 80) \cdot \frac{kN \cdot m^3}{E \cdot J_Y} + (-4 \cdot 3 \cdot 80) \cdot \frac{kN \cdot m^3}{G \cdot J_X}\right] \end{split}$$

 $\Delta_{1p} = -11.806 \,\mathrm{m}$ 

$$\Delta_{2p} := (0) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^3}{\mathrm{E} \cdot \mathrm{Jz}} + \left(\frac{-1}{2} \cdot 3 \cdot 3 \cdot 40 - \frac{1}{2} \cdot 5 \cdot 5 \cdot 80\right) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^3}{\mathrm{E} \cdot \mathrm{Jy}} + (-3 \cdot 5 \cdot 40) \cdot \frac{\mathrm{kN} \cdot \mathrm{m}^3}{\mathrm{G} \cdot \mathrm{Jx}}$$
$$\Delta_{2p} = -7.356 \,\mathrm{m}$$

Rozewiązanie układu równań

$$\mathbf{D} := \begin{pmatrix} \delta_{11} & \delta_{12} \\ \delta_{12} & \delta_{22} \end{pmatrix} \qquad \mathbf{P} := \begin{pmatrix} -\Delta_{1p} \\ -\Delta_{2p} \end{pmatrix}$$

$$X := D^{-1} \cdot P$$
  $X = \begin{pmatrix} 19.87874 \\ 13.22464 \end{pmatrix} \cdot kN$ 

| Momenty |           |           |        |           |           |        |     |          |      |         |         |         |
|---------|-----------|-----------|--------|-----------|-----------|--------|-----|----------|------|---------|---------|---------|
|         |           | Stan X1=1 |        |           | Stan X2=1 |        |     | Stan P   |      |         | Most    |         |
|         | Mx        | My        | Mz     | Mx        | My        | Mz     | Mx  | My       | Mz   | Mx      | My      | Mz      |
| A-B     | 0         | 0         | 0      | 0         | 0         | 0      | 0   | 0        | 0    | 0       | 0       | 0       |
| B-A     | 0         | 0         | 4      | 0         | 0         | 0      | 0   | -40      | -80  | 0       | -40     | -0.484  |
| B-C     | 4         | 0         | 0      | 0         | 0         | 0      | -80 | -40      | 20   | -0.484  | -40     | 20      |
| C-B     | 4         | 0         | 3      | 0         | -3        | 0      | -80 | 40       | -100 | -0.484  | 0.325   | -40.363 |
| C-D     | 0         | -4        | -3     | -3        | 0         | 0      | 40  | 80       | 100  | 0.325   | 0.484   | 40.363  |
| D-C     | 0         | -4        | -3     | -3        | -5        | 0      | 40  | 80       | 50   | 0.325   | -65.641 | -9.637  |
| TNĄCE   |           |           |        |           |           |        |     |          |      |         |         |         |
|         |           | Stan X1=1 |        | Stan X2=1 |           | Stan P |     | Siły ost |      |         |         |         |
|         | Nx        | Ту        | Tz     | Nx        | Ту        | Tz     | Nx  | Ту       | Tz   | Nx      | Ту      | Tz      |
| A-B     | 0         | 1         | 0      | 0         | 0         | 0      | 0   | 0        | 10   | 0       | 19.879  | 10      |
| B-A     | 0         | -1        | 0      | 0         | 0         | 0      | 0   | 40       | -10  | 0       | 20.121  | -10     |
| B-C     | 0         | 1         | 0      | 0         | 0         | -1     | -10 | -40      | 0    | -10     | -20.121 | -13.225 |
| C-B     | 0         | -1        | 0      | 0         | 0         | 1      | -10 | 40       | 0    | -10     | 20.121  | 13.225  |
| C-D     | 1         | 0         | 0      | 0         | 0         | -1     | -40 | -10      | 0    | -20.121 | -10     | -13.225 |
| D-C     | 1         | 0         | 0      | 0         | 0         | 1      | -40 | 10       | 0    | -20.121 | 10      | 13.225  |
|         |           |           |        |           |           |        |     |          |      |         |         |         |
| REAKCJE |           |           |        |           |           |        |     |          |      |         |         |         |
|         | Stan X1=1 | Stan X2=1 | Stan P | Rost      |           |        |     |          |      |         |         |         |
| RDX     | 0         | 1         | 0      | 13.225    |           |        |     |          |      |         |         |         |
| RDY     | 0         | 0         | -10    | -10       |           |        |     |          |      |         |         |         |
| RDZ     | -1        | 0         | 40     | 20.121    |           |        |     |          |      |         |         |         |
| MDX     | 3         | 0         | -50    | 9.637     |           |        |     |          |      |         |         |         |
| MDY     | 4         | 5         | -80    | 65.641    |           |        |     |          |      |         |         |         |
| MDZ     | 0         | 3         | -40    | -0.325    |           |        |     |          |      |         |         |         |

Sprawdzenie kinematyczne

$$\begin{split} u_{Az} &= \int \frac{M1y \cdot Mosty}{E \cdot Jy} \, ds + \int \frac{M1z \cdot Mostz}{E \cdot Jz} \, ds + \int \frac{M1x \cdot Mostx}{G \cdot Jx} \, ds \\ u_{Az} &:= \left[ \frac{-1}{2} \cdot 4 \cdot 4 \cdot \frac{2}{3} \cdot 0.484 + \frac{2}{3} \cdot 4 \cdot \frac{10 \cdot 4^2}{8} \frac{1}{2} 4 + \frac{1}{2} 3 \cdot 3 \cdot \left( \frac{1}{3} 20 - \frac{2}{3} 40.363 \right) + 3 \cdot 5 \cdot \frac{1}{2} (9.627 - 40.363) \right] \cdot \frac{kN \cdot m^3}{E \cdot Jz} \dots \\ &+ \left[ \left[ 4 \cdot 5 \cdot \frac{1}{2} (65.641 - 0.484) \right] \cdot \frac{kN \cdot m^3}{E \cdot Jy} + (-4 \cdot 3 \cdot 0.484) \cdot \frac{kN \cdot m^3}{G \cdot Jx} \right] \\ u_{Az} &= 1.539 \times 10^{-4} \, m \end{split}$$

błąd względny

$$blad1 := \frac{\left|u_{Az}\right|}{\left|\Delta_{1p}\right|} = 1.303 \times 10^{-3} \cdot \%$$

$$u_{Bx} = \int \frac{M2y \cdot Mosty}{E \cdot Jy} \, ds + \int \frac{M2z \cdot Mostz}{E \cdot Jz} \, ds + \int \frac{M2x \cdot Mostx}{G \cdot Jx} \, ds$$

$$u_{Bx} := (0) \cdot \frac{kN \cdot m^{3}}{E \cdot Jz} + \left[\frac{-1}{2} \cdot 3 \cdot 3 \cdot \frac{1}{2}(40 + 0.325) + \frac{1}{2} \cdot 5 \cdot 5 \cdot \frac{1}{2}(65.641 - 0.484)\right] \cdot \frac{kN \cdot m^{3}}{E \cdot Jy} + (-3 \cdot 5 \cdot 0.325) \cdot \frac{kN \cdot m^{3}}{G \cdot Jx}$$

 $u_{Bx} = -0.02 \text{ m}$ 

blad2 := 
$$\frac{\left|\mathbf{u}_{\mathrm{Bx}}\right|}{\left|\Delta_{2p}\right|} = 0.274 \cdot \%$$

Sprawdzenie statyczne

RDx := -13.225 + 13.225 = 0

RDy := 10 - 10 = 0

RDz := -40 + 19.879 + 20.121 = 0

MDx := -10.5 - 20 + 40.3 + 9.637 - 19.879.3 = 0

 $MDy := -19.879 \cdot 4 + 10 \cdot 4 \cdot 2 - 13.225 \cdot 5 + 65.641 = 0$ 

MDz := -0.325 + 10.4 - 13.225.3 = 0





